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ABSTRACT

SOXS (Son Of X-Shooter) is a single object spectrograph, characterized by offering a wide simultaneous spectral
coverage from U- to H-band, built by an international consortium for the 3.6-m ESO New Technology Telescope
at the La Silla Observatory, in the Southern part of the Chilean Atacama Desert. The consortium is focussed
on a clear scientific goal: the spectrograph will observe all kind of transient and variable sources discovered by
different surveys with a highly flexible schedule, updated daily, based on the Target of Opportunity concept. It
will provide a key spectroscopic partner to any kind of imaging survey, becoming one of the premier transient
follow-up instruments in the Southern hemisphere. SOXS will study a mixture of transients encompassing all
distance scales and branches of astronomy, including fast alerts (such as gamma-ray bursts and gravitational
waves), mid-term alerts (such as supernovae and X-ray transients), and fixed-time events (such as the close-by
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passage of a minor planet or exoplanets). It will also have the scope to observe active galactic nuclei and blazars,
tidal disruption events, fast radio bursts, and more. Besides of the consortium programs on guaranteed time,
the instrument is offered to the ESO community for any kind of astrophysical target. The project has passed
the Final Design Review and is currently in manufacturing and integration phase. This paper describes the
development status of the project.
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Figure 1. SOXS at the Nasmyth focus of the NTT.

1. INTRODUCTION

The transients are astronomical events that last only for a limited time. In the last decades, the research on
transients has generated many of the most impacting discoveries in astrophysics, like the gamma-ray bursts,
the accelerating universe, the super-luminous supernovae and, more recently, the electromagnetic counterparts
of gravitational wave events. Moreover, the future decade is expected to be a golden age for the study of
transients, with new extremely powerful survey facilities coming into operation. As of today, the transients
are being discovered at a rapid rate, but the number of discoveries will enormously increase with the future
survey telescopes like the Vera Rubin telescope. The space for new discoveries is immense, provided that the
new discovered objects are rapidly followed up by dedicated optical/near-infrared telescopes with spectroscopic
capabilities.

Nevertheless, so far most of the transient objects discovered by the current surveys remain unclassified, as the
observing time usually granted for their classification and follow-up is largely insufficient. Thus, it is expected



Figure 2. The SOXS functional diagram.

that when the future large scale survey machines will start operations, if no actions are taken, the bottleneck on
the spectroscopic follow-up will be unsustainable.

SOXS is designed exactly to follow up rapidly the new discovered objects, simultaneously at optical and
near-infrared wavelengths. Thus, the science case of the instrument is combined with a good timing, which
makes it coming into operation in parallel with many synergic facilities: just to name a few, LSST, Euclid,
Gaia, PanSTARRS, Zwicky Transient Factory for optical searches, Swift, Fermi, SVOM, MAGIC and CTA for
high-energy objects and, in the multi-messenger domain, aLIGO/VIRGO for gravitational waves, and KM3NET
and ICECUBE for neutrinos.

SOXS will have a significant amount of observing time (the consortium will be granted with 900 NTT nights
over 5 years) to classify the astrophysical transients and characterize and follow-up the most interesting objects.
Meanwhile, the consortium has established dedicated working groups to prepare the forthcoming science phase.
Their interests span over the classification and study of all kind of transients, e.g. supernovae, electromagnetic
counterparts of gravitational wave events, neutrino events, tidal disruptions of stars in the gravitational field
of supermassive black holes, gamma-ray and fast radio bursts, X-ray binaries and novae, magnetars, but also
asteroids and comets, activity in young stellar objects, blazars, and AGN.

The SOXS focussed science case perfectly fits into the strategy of specializing the two medium-class telescopes
operated by ESO in the La Silla Observatory to dedicated tasks: the NTT with SOXS is devoted to the transients,
whereas the 3.6-m is dedicated to exoplanets.1

Apart from the realization of the instrument, the consortium is committed to handle the operation phase,
managing the schedule for the consortium and the ESO community. The schedule will be flexible and updated



Figure 3. The interface flange with the Nasmyth rotator equipped with the co-rotator feedback system. Left: design;
Right: as built.

daily in order to respond to fast alerts, with scientists on duty, ready to react. The consortium will also provide
to the community essential tools, like the Exposure Time Calculator and the reduction pipeline. The operations
will be mainly managed remotely, but still with a telescope operator on site for the night duties.

2. DESIGN OVERVIEW

Hereinafter, we summarize the instrument design, complementing the descriptions presented at previous confer-
ences2,3 with the most recent updates, and reporting on the status of the project.

SOXS is a medium resolution spectrograph with an average R∼4500 for a 1 arcsec slit, capable of simul-
taneously observing over the spectral range 0.35-2.0µm. It follows the fundational concepts of the X-shooter4

at the ESO-VLT, albeit with a different instrument design. Obviously, for most of the time SOXS will work
in spectroscopic mode, but the instrument offers imaging capabilities as well through the acquisition camera,
allowing for multi-band photometry of the faintest transients in the optical band (ugrizY + V Johnson).

A 3D layout of SOXS at the Nasmyth focus of the NTT is shown in Fig. 1. Most of the parts in the figure
have been manufactured and are currently available at the various SOXS laboratories.

The instrument is composed of two distinct spectrographs, for the UltraViolet-Visible (350-850 nm) and the
Near InfraRed (800-2000 nm) bands. The wavelength overlap has been designed to allow for the cross-calibration
of the two arms. The UV-VIS arm is based on a novel multi-grating concept,5 imaging different narrow band
spectra on a single “wonder” camera,6 whereas the NIR arm7 implements a layout with collimator compensation
of camera chromatism.8

The two arms are connected to a common opto-mechanical system, the “Common Path”, which splits the
light from the telescope focus to the two spectrograph slits, through relay optics which reduce the F/number from
F/11 to F/6.5 and compensate for the atmospheric dispersion in the UV-VIS arm. Additionally, the Common



Figure 4. The cable co-rotator support structure. Left: design; Right: as built (cable wrap missing in the picture).

Path drives the light to/from the other instrument sub-systems, i.e. the 3.5′×3.5′ acquisition and guiding camera
and the unit for the wavelength and flux calibration.

The functional diagram of the instrument is represented in Fig. 2.

3. STATUS OF INSTRUMENT REALIZATION

3.1 The structure

At the NTT, the Nasmyth platforms at the two foci are not an integral part of the telescope, they are rather built
for the necessities of the instruments. Following a trade-off analysis between maintaining the existing Nasmyth
platform or not, we decided to replace it with a brand new one, tailored for SOXS. It hosts the two electronic
cabinets and a cable co-rotator to drive cables and pipes through two cable-wraps.

A telescope simulator loaned by ESO, replicating exactly the NTT mechanical interface and provided with a
rotating bearing, has been moved to the INAF laboratories for testing the instrument in any gravity condition.
During the pre-integration activity in Europe, the new platform will not be used because the telescope simulator
cannot accomodate it. The structural parts that will be needed during the pre-integration in Europe, i.e. the
interface flange and the co-rotator system, have been manufactured, pre-mounted and checked. A preliminary
alignment of the sub-system interfaces to the flange has also been done.

The co-rotator is driven by a servo motor that follows the analogue signal coming from linear sensors pushed
during the instrument rotation. The electronics has been validated and is going to be integrated with the
mechanics.

Figure 3 shows the interface flange with the co-rotator sensing system, whereas Fig. 4 shows the co-rotator
structure that will host the two cable-wraps.

3.2 Common Path

Figure 5 shows the Common Path9 in its advanced status of realization. In normal operations, the light coming
from the telescope through an instrument shutter is split by a dichroic, which reflects the visible and transmits the
infrared wavelengths to two folding mirrors, deviating the beams to tip-tilt devices for the active compensation
of the instrument flexures. The atmospheric dispersion is corrected by an ADC in the visible arm, where the
atmospheric effect is more severe. The infrared arm is provided with a focusing mechanism which, together with



Figure 5. The Common Path unit. Left: design; Right: real system during integration activities. The ADC system and
the Acquisition Camera mirror are missing in the picture.

the telescope secondary mirror axial displacement, gives the two degrees of freedom to get always the best focus
on both arms.

In calibration mode, a selector mirror on a movable slit allows us to pick the light from the calibration lamps.
A further selector device allows us to redirect the light to the acquisition camera, for acquisition of the target or
light imaging.

The Common Path structure was manufactured and underwent the interface test with the flange successfully.
The procurement of the optical components is almost completed, with the only exception of the Atmospheric
Dispersion Corrector assembly, composed of two quadruplets installed in counter-rotating devices. All the other
optical elements are available, glued on their mounts and installed on the optical bench, where the preliminary
optical alignment has been completed.10 The actuator control loops have been preliminary tuned and the
instrument software is ready for integrated tests.

3.3 UV-VIS Spectrograph

The UV-VIS spectrograph5 can be divided in two optical sub-systems.

The first part is a feed which collimates the beam coming from the Common Path, splits the beam to four,
each beam with ∆λ ∼100 nm, and disperses each beam using a novel design based on multiple ion-etched gratings
optimized for the relevant beam waveband. The feed optics are an off-axis parabola, acting as collimator, and
a set of dichroics, folding mirrors and gratings. Their procurement has been completed and all the parts are in
specs. The feed system optomechanics is ready (Fig. 6) and the alignment of the optics is well on the way with
good results.

The second part is a Schmidt camera fed by the four beams simultaneously, designed to be very compact
with one mirror and two lenses, where the field flattener is the CCD window. The camera optics are going to be
delivered and their installation is envisaged immediately after.

Meanwhile, the detector system11 is being assembled. It is based on a e2v CCD 44-82, a custom detector
head coupled with a Continuous Flow Cryostat (CFC) cooling system and the NGC CCD controller developed by
ESO. The CCD chamber (Fig. 7) is ready and tests of the detector installation procedure have been performed.
The detector system has been procured and is currently under test.



Figure 6. The UV-VIS spectrograph feed system. Left: design; Right: as built.

Figure 7. The UV-VIS spectrograph CCD dewar and mount.

The integration of the opto-mechanics with the detector system and the validation of the whole unit are
forthcoming.

3.4 NIR Spectrograph

The NIR spectrograph12 is a fully cryogenic echelle-dispersed spectrograph, working in the range 0.80-2.00 µm,
equipped with an 2k x 2k Hawaii H2RG IR array from Teledyne, working at 40K.

The optical design is composed of a double pass collimator and a refractive camera; the dispersion is obtained
via a main disperser grating and three prisms acting as cross-dispersers. The collimator receives a F/6.5 input
from the Common Path and creates a collimated beam. The main disperser is a standard grating with 72 l/mm
and a blaze angle of 44deg, whereas three Cleartran prisms, used in double pass, provide the cross-dispersion.



Figure 8. NIR arm synthetic frame.

Figure 9. The NIR spectrograph vacuum vessel. Left: design; Right: as built.

The camera, a completely transmissive system composed of three single lenses, re-images on the detector the
focal plane produced by the second pass through the collimator. The spectrum is cross-dispersed on 15 orders:
Fig. 8 shows a synthetic spectrum obtained through the SOXS instrument simulator.13

The spectrograph is cooled down to ∼150 K to lower the thermal background and is equipped with a thermal
filter to block any thermal radiation above 2.0µm. The cryogenics is operated via a Closed-Cycle Cryocooler.

Figure 9 represents the D-shaped vacuum vessel, recently delivered, that will be interfaced to the flange
through a set of kinematic mounts. Most of the NIR spectrograph optical elements are available in SOXS
laboratories; the procurement is soon expected to be over. Afterward, the sub-system will be fully integrated
and tested.

3.5 Acquisition Camera

The Acquisition Camera14 is used for target acquisition, (optional) secondary guiding and for providing scientific
photometric observations.



The system consists of a collimator lens, a folding mirror, a filter wheel equipped with a broad-band filter
set (ugrizY and V-Johnson), focal reducer optics, and a CCD camera, included in an aluminum structure. The
detector is a 1k x 1k Andor iKon-M 934 camera. The driver to run the camera under the SOXS control software
has been developed and validated with the real system.

The sub-system receives a F/11 beam from the telescope through a selector folding mirror placed in the
Common Path, having different positions for different functions.

In acquisition and imaging mode, the selector mirror redirects the full field towards the camera.

In spectroscopy mode, the selector mirror passes through a hole an unvignetted field of 15 arcsec to the
spectrograph slits, whereas the peripheral field is simultaneously imaged on the camera. Thus, a secondary
guiding15 is possible using peripheral sources.

At the time of writing, all orders related to the camera have been placed, many system components are
available and the remaining parts are going to be delivered soon, prior to the final integration phase.

Figure 10. Calibration Unit. Left: design; Right: as built.

3.6 Calibration Unit

Figure 10 represents the Calibration Unit16 design (left) and a picture of the system integration (right). The light
is emitted out of the exit port of an integration sphere. The manufacturing of the unit is basically completed,
thus system tests are upcoming.

On the left side of the unit, the integration sphere with the 4 Ne-Ar-Hg-Xe pen-ray lamps bundled together
for NIR wavelength calibration is visible. The individual lamps are controlled to operate together as one lamp.
The mount of the Quartz-Tungsten-Halogen (QTH) lamp, for flux calibration in the 500-2000 nm range, is on
the opposite side of the sphere. On the right side of the unit, the Th-Ar hollow cathode lamp (cyan in the
drawing) for UV-VIS wavelength calibration and the Deuterium (D2) lamp, for flux calibration in the 350-500
nm range (used simultaneously with QTH lamp for UV-VIS arm flux calibration), are visible as well.

The light coming from the unit goes through relay optics to get a uniform illumination of the spectrograph
slits, replacing the light coming from the telescope. The selection between the telescope and the calibration unit
beams is implemented by a moving mirror in the Common Path.

The unit includes a synthetic star mode based on a pin-hole mask, which can be placed next to the integrating
sphere, and lenses to re-image it at the telescope focal plane. It is used to simulate an artificial star for engineering
purposes.



Figure 11. Control electronics under test.

Figure 12. Cryogenics system under test with a dummy vessel in the lab.

3.7 Instrument Control

The Instrument Control Electronics17 is based on a Beckhoff PLC to control the instrument functions. The
PLC is equipped with modules to interface with motor drives, encoders, and all the other hardware devices.
The architecture is based on an EtherCAT fieldbus network, which allows us to distribute the control modules,
wherever they are needed.

In the case of SOXS, this allowed us to use only one CPU, communicating through the fieldbus network with
local control modules physically located in different sub-racks and cabinets.

An Open Platform Communication - Unified Architecture (OPC-UA) server is installed on the PLC: it stores
all the process variables accessible to the Instrument Software,15 based on the VLT Common Software layer and
running on an Instrument Workstation. The Linux Instrument Workstation adopts the OPC-UA protocol to



Figure 13. The SOXS Scheduler App.

communicate with the PLC.

This architecture follows the ESO standards, favouring the integration and maintenance of the instrument
within an ESO observatory. The effectiveness of these solutions has been proved by recent instruments like
ESPRESSO.18

Figure 11 shows one of the 19-inch sub-racks hosted in the two electronic cabinets. Most of the software and
control electronics is ready,19 and tests with the instrument are forthcoming.

Figure 12 shows the laboratory activities related to the Cryo-Vacuum system. This is a fully independent
sub-system, by the control point of view. It is based on a Siemens PLC that must run continuously, reliably
and independently of any other instrument necessity. Thus, the main instrument software does not control the
Cryo-Vacuum system status, but just reads its status.

4. PREPARING THE OPERATION PHASE

4.1 The Scheduler

With SOXS coming into operation, the way the NTT is operated will change a lot. So far, the operations are fully
handled by ESO. The astronomers submit proposals twice a year, the ESO Observing Programmes Committee
(OPC) panels review, accept and give them a grade. Then, the Principal Investigators of the programmes
prepare and submit the corresponding Observation Blocks through the P2 web application, ESO prepares the
schedule and finally the observations are performed in Visitor Mode, i.e. with astronomers traveling to Chile.
The astronomers are assisted in the whole process by an ESO department.

This “standard” paradigm will change significantly with SOXS. The proposals will still be evaluated by the
OPC, but the responsibility of the operations will go to the consortium, that consequently will provide services
to the entire users’ community. Also, the transient science requires a heavy usage of Target of Opportunity
mode, i.e. the targets are not known in advance and the schedule cannot be static. Thus, the consortium will



work continuously on the selection of the targets, the generation of the Observation Blocks, the scheduling of
the nights, mixing the targets coming from the consortium and the community.

In the organization of this transition, as most of the consortium people do not reside in Chile, one guideline
has been the ability to govern remotely most of the new process.

A new framework is under development, where the consortium representatives will be assisted by a software
application to select the targets, generate the Observation Blocks, schedule the night. This application is going
to be a fundamental tool, given the enormous discovery rate of transients expected in the next decade from the
Rubin telescope and the other facilities.

The target selection will benefit from the heritage of the PESSTO (recently renamed to ePESSTO+) spec-
troscopic survey, in execution at the NTT with the existing spectrographs since several years. The PESSTO
Marshall application, fed with transients discovered by the existing surveys (e.g. ATLAS, ZTF, etc.), is a power-
ful aid for the time-domain astronomers to select the transients for classification and follow-up. It talks directly
to the survey databases, assimilating all information about the targets, and recording classifications and all
available data in its own database.20

This concept will be evolved to a SOXS Marshall, becoming part of a more complex system that will interface,
on the other side, to the ESO existing infrastructure.21 The SOXS software will generate automatically the
Observation Blocks through the P2 API, pushing them daily into the night execution sequence at the telescope.
The application will take care of the observability of the targets and weather conditions, retrieving data from
the observatory Astronomical Site Monitor system. In case any weather or technical issue affects the envisaged
execution sequence, a new schedule will be regenerated on the fly, optimized for the new conditions and the
remaining part of the night.

This scheduler software22 (under development, see Fig. 13) is characterized by a high available and scalable
architecture, implementing state-of-the-art technologies for API application like Docker Container, API Gateway
and Python-based Flask framework.

4.2 The Pipeline

SOXS data science and data quality control products will be similar to those produced for X-shooter, but with
the important difference that science ready reduced spectra shall be produced immediately after an exposure
finishes, due to the focus on rapid response to transient objects.

The reduction tools of many instruments produce quick-look data within seconds of an exposure finishing,
but science ready data are ready within days to weeks: to achieve SOXS science goals, delays in accessing fully
reduced, science ready products, are not acceptable. Thus, science ready, fully reduced spectra will be produced
immediately after an exposure has finished.

The stability of calibration frames (bias, darks, flat-fields, arc calibrations and flux calibration) is the key for
producing rapid data products which are scientific grade.

The SOXS pipeline23 development is well underway, currently focused on the capability of reducing X-shooter
data. The pipeline is being written in Python 3, using many mature open-source packages such as Numpy,
CCDProc, Matplotlib, and other Astropy affiliated projects. It will be available as a service for the entire SOXS
users’ community.

5. CONCLUSIONS

SOXS is going to be the work-horse of ESO observatories for the spectroscopic follow-up of transient sources.
All the sub-systems are in an advanced phase of realization, very close to be completed and shipped to the
preliminary integration site in Italy. The instrument integration and test phase is imminent and planned in
2021.

Needless to say, the impact of the pandemic on a project in manufacturing and integration phase is severe,
thus SOXS is experiencing delays. Currently making plans is harder than usual; however, at the time of writing,
SOXS is planned to be on sky within 2022.
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